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Abstract: An earth-air heat exchanger (EAHX), also known as an earth tube heat exchanger 

or Canadian well, is a system for cooling and heating buildings using the ground as a heat 

sink/source. This study examines the ground temperature gradient and the performance of 

an EAHX performance in Burkina Faso. Ground temperature measurements were made at 

depths of 0.5 m, 1.0 m and 1.5 m.  At the hottest time of the day, 15:00, the average outside 

temperature was 39.0°C, but the average temperature 1.5 m underground was 30.4°C. A 

clear phase shift was observed between the maximum outside temperature and the 

maximum ground temperature: the time of the day when the outside temperature is highest 

corresponds to the time when the underground temperature was lowest. The EAHX was 25 m 

long, 1.5 m underground and used a 95 m3/hr ventilator.  It was able to cool the air drawn in 

from the outside by 7.6°C.  

 

Keywords: Earth-air heat exchanger (EAHX), Canadian well, Passive solar cooling, Burkina 
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INTRODUCTION 

 

The Intergovernmental Panel on Climate Change (IPCC) (Pachauri and Reisinger, 

2007) estimates that the Earth's surface temperature has increased by 0.6°C and 

that human activities, such as burning fossil fuels for energy, have played a major 

role in climate change. Unfortunately, the world's insatiable thirst for energy will 

only increase as poorer countries become more industrialised.  

Future energy demand will be particularly strong in the home heating and 

cooling sector in the developing world. As people gain affluence, one of the first 

luxuries they seek are heating and cooling systems for their homes and offices. For 

example, in the United States (USA), 87% of homes have air conditioning, while in 

India, only 2% of homes have air conditioning (Sivak, 2009). By 2030, India will 

catch up with the USA in the number of air conditioning units used within the 

country (Issac and van Vuuen, 2009). Once a home has air conditioning, the 

system can account for more than half of the home's energy consumption 

(Environmental Protection Agency, 2009). 

A study conducted by Michael Sivak (2009) estimates that 24 of the top 50 

metropolitan cities are in the developing world and are in warm climates. One city 

alone, Mumbai, has a cooling need equal to one quarter of the USA. It is 

predicted that by the end of the 21st century, the energy used for indoor cooling 

will be 40 times greater than it is today. This will cause the total CO2 emissions to rise 

from 0.8 Gt C in 2000 to 2.2 Gt C in 2100 (Issac and van Vuuen, 2009). 

Burkina Faso, a landlocked country in western Africa, is an example of a 

developing country with a major cooling demand. In the northern part of the 

country, temperatures can reach 50°C, and in the south, temperatures can reach 
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45°C (Ogou et al., 2008). Even indoor temperatures can be dangerously high; it is 

not uncommon for it to be 40°C in a bedroom and 50°C in the kitchen.   

Unfortunately, Burkina Faso is very poor, and its citizens have few options to 

cool their homes. Approximately 46.4% of the population lives below the poverty 

line (International Monetary Fund, 2005), and in 2003, Burkina Faso was ranked 6th 

among the least developed countries (United Nations, 2003). Hence, fans and air 

conditioners are luxuries for the very rich. To stay cool, most Burkinabe work and 

sleep outside. However, this puts people at a greater risk for contracting malaria or 

being attacked.   

Even if a family can afford an air conditioner, only a small proportion of the 

country has electricity. It is estimated that 45.7% of the population has electricity in 

the cities and that only 1.1% of the population has electricity in rural areas 

(International Monetary Fund, 2005). In 2006, the country's energy consumption 

was 0.019 quadrillion BTU, but its energy production was 0.001 quadrillion BTU (US 

Energy Information Administration, 2006).  Clearly, there is a major energy need in 

the country.   

To ameliorate indoor temperatures, Burkinabe architects and engineers can 

design homes to take advantage of passive solar cooling techniques, such as 

thermal walls, cross ventilation and earth-air heat exchangers (EAHX). An EAHX is a 

passive climate control technology that relies on the ground mean temperature to 

heat and cool buildings (Florides and Kalogirou, 2007). A simple EAHX consists of 

underground tubes with both an inlet for outside air to enter and an outlet for air to 

exit a room. In warm weather, hot air from the outside enters the tube and cools as 

it travels through the tubes. The cooled air is then drawn or pumped into a room. In 

colder climates, cool air is drawn into the tubes and warmed as it travels through 

the tubes. The warm air is then used to heat a home. 

Historically, EAHX research and implementation have been confined to 

Europe and America, although in recent years, researchers in emerging 

economies have investigated EAHXs. In India, Shukla, Tiwari and Sodha (2008) 

tested a closed-loop EAHX for an adobe house in New Delhi.  In the summer, the 

EAHX cooled the room by 3°C, and in the winter, the EAHX heated the room by 

6.5°C. Another researcher in India, Girja Sharan (2004), built several EAHXs, 

including an exchanger for a zoo and a greenhouse. In one of Sharan's studies, 

researchers used 50 m of pipe to cool the inside air from 40.8°C to 27.2°C.   

Al-Ajmia, Lovedayb and Hanbyc (2006) conducted a theoretical study on 

EAHXs for desert environments in Kuwait. Kuwait has a hot and dry desert 

environment like that of Burkina Faso. In July and August, the average afternoon 

temperature in Kuwait is 45°C, and in the summer months, the average humidity is 

between 14% and 42%. Al-Ajmia et al. modelled several EAHXs and concluded 

that the optimal EAHX configuration used 60 m of pipe with a diameter of 0.25 m, 

buried 4 m deep, with a 100 kg/hr air flow rate. They conclude that an EAHX at the 

peak midday temperature in the summer (45°C) can cool a 300 m3 building by 

2.8°C. If the system is combined with traditional air conditioning, it can reduce the 

monthly energy demand by 420 kW hr and reduce the seasonal cooling demand 

by 30%. 
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Figure 1. Diagram of A Simple EAHX 

 

At the International Institute for Water and Environmental Engineering, two studies 

investigated EAHXs in Burkina Faso. In the first study (Ogou et al., 2008), a team 

tested the underground thermal gradient in Ouagadougou, Burkina Faso and 

modelled the cooling affects of a 30 m long EAHX buried 2 m underground. Over 

a two-day period, the team measured the soil temperature at 5 depths (0.4 m, 0.8 

m, 1.2 m, 1.6 m and 2.0 m) and found that the soil temperature fluctuated 

between 30.6°C and 32.5°C at 2.0 m. In comparison, the outdoor temperature 

varied from 24°C to 40°C. They suggested that the best EAHX design for Burkina 

Faso would use 30 m of pipe (200 mm in diameter) and a volume flow rate of 245 

m3/hr. They predicted that the EAHX would cool the inside air by 5°C. 

The other EAHX study conducted in Burkina Faso by Kintonou et al. (2008) 

examined the relationship between the tube length, tube diameter and the flow 

rate. The team concluded that a long, thin pipe and slower airflow in the tube 

allow better heat transfer between the soil and the air. De Paepe and Janssens 

(2003) reached a similar conclusion in 2003 when they studied EAHXs. However, De 

Paepe and Janssens also determined that arranging the tubes in a parallel 

sequence increases thermal performance by decreasing the pressure drop in the 

tube. Kintonou et al. (2008) concluded that the best EAHX for Burkina Faso would 

consist of two 17 m long tubes in parallel, buried 2.2 m underground, with a 90 

m3/hr ventilator.  Overall, the EAHX would cool the air in the tube by 10°C.   

 

Thermal Gradient of the Soil 

  

The performance of an EAHX is governed by two factors: the underground 

temperature and the heat transfer between the pipes and the ground. The 

underground soil temperature depends upon the heat conduction through the soil 

and two boundary conditions: the initial surface temperature and the soil 

temperature as the depth approaches infinity (Elias et al., 2004; Mihalakakou et al., 

1997). The one-dimensional solution proposed (Eq. 1) by Van Wijk and de Vries in 

1963 (Elias et al., 2004) is a common method to describe the ground temperature 

profile, T(z,t) with respect to depth (z) and time (t).  The variable "a" is the thermal 

diffusivity of the soil calculated by Eq. 2.  For a list of the variables, refer to Table 1. 
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The initial surface temperature can be described by a complex sinusoidal wave 

that combines the temperature variation over a day and the temperature 

variation over a year (Eq. 3). 
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The other boundary condition, the final temperature as the depth approaches 

infinity, equals the average annual temperature at the surface (Tsur) (Eq. 4). 
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The solution to Eqs. 1, 3 and 4 is given by Eq. 5. 
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B is the dampening depth found using Eq. 6.  
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In Eq. 5, Aa = annual amplitude, ωa = annual radial frequency, φa = annual phase 

constant, Aj  = average daily amplitude, ωj = daily radial frequency, and φj = daily 

phase constant. 

Although the Van Wijk and de Vries method has been improved, for 

example, by re-examining the initial surface temperature (Elias et al., 2004) and 

the daily amplitude (Mihalakakou et al., 1997), researchers still consider the Van 

Wijk and de Vries solution to be an accurate simplification (Mihalakakou et al., 

1997). 

 

Table 1. Characteristics and Constants for Soil in Ouagadougou, Burkina Faso  
  

Characteristics of Climate and Soil in Ouagadougou, Burkina Faso 

Thermal conductivity (soil) λs 1.23 W/m.k 

Mass volume (soil) ρs 1520 kg/m3 

Specific heat (soil) cs 1650 j/kg.k 

Thermal diffusivity a 4.90E–07 m2/s 

Depth in the soil z  metres 
 

(continued on next page) 
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Table 1. (continued) 
 

Characteristics of Climate and Soil in Ouagadougou, Burkina Faso 

Average annual surface temperature Tsur 28.9 °C 

Average annual temperature amplitude Aa 6.17 °C 

Daily temperature amplitude Aj 5.5 °C 

Dampening depth (annual) Ba 0.037 metres 

Dampening depth (daily) Bj 1.93E–3 metres 

Annual temperature radial frequency ωa 7.17E–4 rad/h 

Daily temperature radial frequency ωj 0.262 rad/h 

Annual temperature phase constant φa –4.00 rad 

Daily temperature phase constant φj –1.57 rad 
 

Source: Onou, 2008 

 

Earth and Air Heat Transfer 

  

The heat transfer between the soil and pipe is complex, but it can be simplified 

using several assumptions. First, we assume that the Earth is a semi-infinite body 

with an infinite heat capacity and that the temperature gradient across the tube 

wall is negligible. Moreover, if the Biot number is less than 0.1, we can assume that 

the heat conduction rate in the soil is higher than the heat convection from the 

tube wall to the air in the tube and therefore, that the tube will not affect the soil 

temperature. The Biot number can be calculated from the pipe diameter, D, the 

thermal conductivity of the soil, λ, and the global convection coefficient between 

the wall and air, h. These values are found in Tables 1 and 2. 
 

Biot number = 
h D

10.28* 0.00125 / 1.23 = 0.0104. (7)

  

(For a list of the variables refer to Table 2) 

 

In a small section of tube, ds, the heat loss of the air in the tube is equal to the heat 

gain of the tube wall (Eq. 8).

 
 

( )p p xmC dT h ds T T  where ds D dx  (8) 

 
Eq. 8 can be simplified to Eq. 9. 
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This equation is solved for T(x) (Eq. 10). Note that the variable G is merely a 

constant that appears from taking the integral. It is replaced in Eq. 11. 
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The initial conditions are the following (Eq. 11):  
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Once the equation is solved with the initial conditions, the final solution is given by 

Eq. 12. 

 

( ) ( ) exp
p p i

p

hD
T x T T T x

mC
 

(12) 

 

To find the global convection coefficient, h, the Reynolds number (Eq. 13), Prandtl 

number (Eq. 14) and Nusselt number (Eq. 15) are calculated. 
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Because the Reynolds number is greater than 2300, the flow is in the turbulent 

region. The Nusselt number can be determined using the Dittus-Boelter equation 

(Al-Ajmia, Lovedayb and Hanbyc, 2006) because there is fully developed 

turbulent flow in a smooth tube. The global convection coefficient is found using 

Eq. 16. 
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The global convection coefficient is calculated to be 10.28 W/(m2.°C). 
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Table 2. Characteristics and Constants of EAHX  
 

Constants and Calculated Values 

Specific heat (air) Cp 1.005 J.kg–1.°C–1 

Thermal conductivity air ka 0.0257 W.m–1.°C–1 

Length of pipe x  m 

Diameter of tube D 0.00125 m 

Length of tube L 25 m 

Flow volume of air 
 

95 m3/hr 

Velocity of air V 2.15 m/s 

Mass flow of air  114.48 kg/s 

Mass volume of air ρ 1.205 kg/m3 

Dynamic viscosity Μ 1.86X10–5 Pa.s 

Temperature of air entering tube Ti  °C 

Temperature of air leaving the tube To  °C 

Temperature of the experiment room Tr  °C 

Temperature of the control room Tcon  °C 

Temperature of the air at point X Tx  °C 

Temperature of tube wall Tp  °C 

Global convection coefficient between wall/air h 10.28 W.m–2.°C–1 

Reynolds number Re 17410 dimensionless 

Prandtl number Pr 7.27E–01 dimensionless 

Nusselt number Nu 50.01 dimensionless 
 

Source: Onou, 2008 

 

Experimental setup 

  

The EAHX constructed at the International Institute for Water and Environmental 

Engineering in Ouagadougou, Burkina Faso is a horizontal, open-loop system, 25 m 

long and 1.5 m deep (the pipe is slightly declined so that condensation can drain 

from it through a hole drilled in the bottom). The pipe is a 125 mm diameter, 

schedule 80, PVC pipe. The EAHX has two air inlets, located 15 m and 25 m away 

from the air outlet in the building. The two air inlets allow the system to be tested 

with two different pipe lengths. In this study, an EAHX using 25 m of pipe was 

tested.   

There are five temperature sensors located inside the pipe: 5 m, 10 m, 15 m, 

20 m and 25 m away from the air inlet. In addition, there are temperature sensors 

buried 0.5 m, 1.0 m and 1.5 m in the ground to measure the soil temperature 

gradient. To clean the EAHX, a nylon cord was placed inside the tubes, which 

allows a cloth to be pulled through the system, removing all of the dust and debris. 

The experiment room and the control room are each 3.50 m × 2.75 m × 5.35 

m. The experiment and control rooms share a wall, and both of the rooms are 

connected to a larger laboratory. The walls are 18 cm thick and made from locally 

produced brick covered in concrete. The ceiling is made from wood slates, and 
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the roof of the structure is corrugated steel. This is a typical construction for homes 

and offices in Burkina Faso. The ventilator used to draw the air through the pipes is 

14 W and has a volume flow rate of 95 m3/hr.   

Figure 2 is a diagram of the EAHX and laboratory. The experiment room is on 

the right, and the control room is connected on the left. The large laboratory (not 

shown) extends from the rear of these rooms. The 25 m long EAHX (serpentine 

pattern) is connected to the experiment room. 
 

 
 

Figure 2. Schematic of EAHX and Laboratory in Ouagadougou, Burkina Faso 

 

Baseline measurements were taken from 11 February 2009 to 14 April 2009, and the 

EAHX was tested from 14 April 2009 to 14 May 2009. Temperature measurements 

were taken at 09:30, 11:45, 15:00 and 16:30, and the EAHX ventilator was 

operational from 10:00 until 16:30. From 12 May 2009 to 14 May 2009, the system 

was monitored continuously for 52 hours to observe the overnight temperature 

trends.  Temperatures at twelve different points were measured: in the experiment 

room, in the control room, in the main laboratory, outside the building, inside the 

pipe (at 5 m, 10 m, 15 m, 20 m and 25 m away from the inlet) and in the soil  (at 

depths of 0.5 m, 1.0 m and 1.5 m). 

 

Sensors 

  

We used an Almemo 2290-8 V5 with NiCr-Ni probes to measure the temperature of 

the rooms and the outside air, and we used a TPI-343 digital thermometer with 

standard K-type thermocouples to measure the ground temperatures and the air 

temperatures inside the pipe. The K-type thermocouples were permanently 

placed inside the tube. Hollow steel pipes protected the thermocouple cord as 

they ran from the pipe to the surface. 

 

Statistical Modelling 

  

Two different statistical parameters, Pearson's correlation coefficient (r') and the 

root mean square error (RMSE), (e), are used to describe the relationship between 

the theoretical and measured values (Shukla, Tiwari and Sodha, 2006).  
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Table 3.  Variables for Pearson Correlation Coefficient and Root Mean Square Error 
 

Variables for Statistical Analysis 

Number of elements n 

Theoretical value x 

Experimental value y 

 

 

RESULTS 

  

The ground temperature gradient shows a clear thermal dampening and thermal 

shift. At a depth of 0.5 m, the ground temperature ranged from 28.6°C to 36.2°C, 

and the average temperature was 32.1°C. At a depth of 1.5 m, however, the 

temperature ranged from 26.6°C to 33.1°C, and the average temperature was 

30.4°C.  Figure 3 shows a comparison of the theoretical values of the ground 

temperature gradient with the measured ground temperatures. The 

measurements were taken between 31 March 2009 and 14 May 2009.  On the x-

axis, 0 = 0:00 hours (midnight) and 12 = 12:00 (noon). The measured values were, 

on average, 1.2°C, 2.0°C and 1.7°C higher than the theoretical values for the 

temperature gradient at depths of 0.5 m, 1.0 m and 1.5 m, respectively. Although 

the measured values of the temperature were on average higher than the 

theoretical temperature values, the root mean square errors between the 

theoretical and experimental values are small.   

 

 
 

Figure 3. Temperature vs. Time of Day (Hours) 

 

In addition, the ground temperature gradient model accurately predicts the soil 

temperature over a 52-hour period between 12 May and 14 May (see Figure 4). 
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During this time period, the outside temperature and the ground temperature 

were recorded approximately every three hours, and the RMSE between the 

theoretical and measure values ranged from 0.02°C to 0.10°C. Figure 4 is a plot of 

the theoretical and measured temperatures during the 52-hour period. In the 

figure, the origin on the x-axis represents midnight on 12 May. The data clearly 

show the soil temperature decreasing with depth and the phase shift of the 

ground temperature with respect to the outside air temperature. At the hottest 

time of the day (11:45 to 15:00), the ground temperature was the coolest, and at 

the coldest time of the day (06:00 to 07:30), the ground temperature was the 

hottest.    

Overall, the EAHX is effective in lowering the temperature of air drawn in 

from the outside.  At 15:00, the air was cooled by an average of 6.18°C, 6.93°C, 

7.42°C and 7.62°C after the air travelled 5 m, 10 m, 15 m and 20 m, respectively. At 

09:30, the air was cooled by an average of 2.07°C, 1.90°C, 1.82°C and 2.53°C after 

the air had travelled 5 m, 10 m, 15 m and 20 m, respectively. The cooling affects 

are less pronounced early in the morning because the outside air is already cool. 

One notable observation is that the air leaving the tube (To) is warmer than the air 

measured inside the tube at 20 m (T20). At 15:00, the average TS was 32.4°C, while 

the T20 is 31.4°C. It is likely that the air warms as it travels in the vertical tube that 

connects the underground portion of the EAHX to the experiment room. The 

average temperature differences (ΔT) between the temperature entering the 

tube (Ti ) and the temperature exiting the tube (TO) at 09:30, 11:45, 15:00 and 16:45 

are 0.93°C, 4.15°C, 6.65°C and 3.80°C, respectively. Figure 5 shows a graph of the 

outside temperature minus the tube temperature at length (T i – Tx) vs. tube length. 

The graph shows a comparison of the measured temperature difference with the 

theoretical temperature difference. The temperature was measured at four times 

each day: 09:30, 11:45, 15:00 and 16:45. 

 

 
 

Figure 4. Temperature vs. Time 

 

Unlike the results from the previous experiments, these results exhibit a large error 

between the theoretical and measured values of the cooling potential of the 

EAHX. Overall, the cooling ability of the EAHX was greater than predicted. The 

differences between the theoretical and measured values could be caused by a 

variety of factors, such as an inaccurate model, varying weather conditions, or 

measurement error. 
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Figure 5. Outside (TE)-Tube Temperature vs. Tube Length 

 

 

CONCLUSIONS AND FUTURE WORK  

 

It was shown that a 25 m long EAHX buried 1.5 m in the ground can cool air drawn 

in from outside by more than 7.5°C. In addition, despite the extreme outdoor 

temperatures, which varied from 25°C to 43°C, the soil temperature at a depth of 

1.5 m remained at approximately 30.4°C. The models accurately predicted the 

underground soil temperature, but they did not accurately predict the difference 

between the temperature in the tube and the outside air.  

In the future, we will improve our EAHX model, compare our results with 

other EAHX models and study the cooling potential of an EAHX to lower the 

cooling load of air conditioning systems. We will also investigate different 

configurations that may make the EAHX more effective in Burkina Faso and other 

desert-like environments. The biggest hindrances to implementing EAHX 

technology in Burkina Faso are social and architectural norms unrelated to EAHX. 

For example, many homes in Burkina Faso have corrugated steel roofs. Although 

steel is sturdy, it becomes very hot in the sun and raises the temperature inside the 

home. Before an EAHX can be successful, architects and engineers must design 

homes to take advantage passive cooling techniques.  

EAHXs are a good technology to improve the quality of life in developing 

countries and to reduce the electricity demand in those countries. If the 

developing world can reduce its energy demand for cooling, then perhaps the 

IPCC's dire outlook for world emissions and climate change can be altered.  
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